LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2015
ST 3816-STOCHASTIC PROCESS

Date: 05/11/2015
Time : 09:00-12:00
Dept. No. \square Max. : 100 Marks

SECTION - A

Answer ALL the questions.

1. Define a process with Independent increments.
2. Define a Markov chain.
3. Obtain the period of state 0 in the Markov chain with the Transition Probability Matrix with states
$0,1,2 . \quad P=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 / 2 & 0 & 1 / 2 \\ 0 & 1 & 0\end{array}\right)$
4. Write the pdf of the inter arrival time T for a Poisson process with parameter λ.
5. If a Markov chain is recurrent, irreducible and aperiodic then the basic limit theorem gives $\lim _{n \rightarrow \infty} P_{i i}^{n}=$ \qquad
6. Define renewal process.
7. When do you say the process $\left\{\mathrm{X}_{n}\right\}$ is a Martingale with respect to the process $\left\{\mathrm{Y}_{\mathrm{n}}\right\}$?
8. Given the Markov chain with states 0,1 and Transition Probability Matrix $P=\left(\begin{array}{cc}1 & 0 \\ 1 / 2 & 1 / 2\end{array}\right)$. Identify whether the states are recurrent or transient.
9. Explain branching process.
10. Define current life and excess life.

SECTION - B

Answer any FIVE questions.

11. Explain the classification of stochastic process with examples.
12. Consider the Markov chain with states $0,1,2$ and Transition Probability Matrix $P=\left(\begin{array}{clc}3 / 4 & 1 / 4 & 0 \\ 1 / 4 & 1 / 2 & 1 / 4 \\ 0 & 3 / 4 & 1 / 4\end{array}\right)$ and the initial distribution $P\left[X_{0}=i\right]=\frac{1}{3} \mathrm{i}=0,1,2$.

Obtain i) $P\left[X_{3}=1, X_{2}=2, X_{1}=1, X_{0}=2\right]$
ii) $P\left[X_{3}=2, X_{2}=1 \mid X_{1}=0, X_{0}=1\right]$
iii) $P\left[X_{2}=2\right]$
13. Write the postulates of pure death process and obtain the solution of the differential equations using $\mu_{n}=n \mu$.
14. Show that $X_{n}=\left(\sum_{1}^{n} Y_{k}\right)^{2}-n \sigma^{2}$ where Y_{k} are iid, $E\left[Y_{k}\right]=0, V\left[Y_{k}\right]=\sigma^{2}, Y_{0}=0$, is a Martingale.
15. In a two state birth and death process, the communication is between only two states 0 and 1 . With the appropriate postulates and infinitesimal matrix obtain $\mathrm{P}_{00}(\mathrm{t})$.
16. Obtain the mean and variance of branching process.
17. Show that a state i is recurrent if and only if $\sum_{n} P_{i i}{ }^{n}=\infty$.
18. Obtain the probability of absorption into state 0 in a gamblers ruin problem, using first step analysis.

SECTION - C

Answer any TWO questions.

19. a) Let P be the regular Transition Probability Matrix on the states $0,1,2, \ldots, N$. then show that the limiting distribution $\left(\Pi_{0}, \Pi_{1}, \ldots, \Pi_{N}\right)$ is the unique non-negative solution of the equations.
$\Pi_{j}=\sum_{k} \Pi_{k} P_{k j} \quad$ and $\quad \sum_{k} \Pi_{k}=1$
b) Consider the Markov chain with the Transition Probability Matrix
0
0
0
1
2
3 $\left[\begin{array}{cccc}1 / 3 & 2 / 3 & 0 & 0 \\ 1 / 3 & 2 / 3 & 0 & 0 \\ 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\ 0 & 0 & 0 & 1\end{array}\right]$

Obtain $\lim _{n \rightarrow \infty} P_{2 i}^{n}, \quad i=0,1,2,3$
20. a) State the postulates of Poisson process and hence obtain an expression for $P_{n}(t)$.
b) if $X_{1}(t)$ and $X_{2}(t)$ are independent Poisson process with parameter λ_{1} and λ_{2}.

Obtain the distribution of \quad i) $X_{1}(t)+X_{2}(t) \quad$ ii) $\quad X_{1}(t)=k$ given $X_{1}(t)+X_{2}(t)=n$
21. a) For a renewal process obtain $E[N(t)]$ and $E\left[W_{N(t)+1}\right]$
b) Obtain the renewal equation for a discrete time renewal $M(n)=F(n)+\sum_{k-1}^{n-1} P_{k} M(n-k)$
c) Obtain the distribution of the current life in the Poisson process.
22. a) Obtain the probability generating function relations for a branching process.
b) How to obtain the probability of extinction for a branching process. Explain with examples.

